Source code for stride.physics.iso_elastic.devito


import numpy as np
import scipy.signal

import mosaic

from ..common.devito import GridDevito, OperatorDevito, devito
from ..problem_type import ProblemTypeBase
from ..boundaries import boundaries_registry


__all__ = ['IsoElasticDevito']


[docs] @mosaic.tessera class IsoElasticDevito(ProblemTypeBase): """ This class represents the stress-strain formulation of the elastic wave equation, implemented using Devito from the tutorial https://slimgroup.github.io/Devito-Examples/tutorials/07_elastic_varying_parameters/. Parameters ---------- name : str, optional Name of the PDE, defaults to an automatic name. grid : Grid, optional Existing grid, if not provided one will be created. Either a grid or space, time and slow_time need to be provided. space : Space, optional time : Time, optional slow_time : SlowTime, optional Notes ----- For forward execution of the PDE, the following parameters can be used: wavelets : Traces Source wavelets. vp : ScalarField Compressional (acoustic) speed of sound of the medium, in [m/s]. vs : ScalarField Transverse (shear) speed of sound of the medium, in [m/s]. rho : ScalarField Density of the medium in [kg/m^3]. problem : Problem Sub-problem being solved by the PDE. """ space_order = 10 time_order = 1 def __init__(self, **kwargs): super().__init__(**kwargs) self.boundary_type = 'sponge_boundary_1' self.interpolation_type = 'linear' self.wavefield = None self._max_wavelet = 0. self._src_scale = 0. dev_grid = kwargs.pop('dev_grid', None) self.dev_grid = dev_grid or GridDevito(self.space_order, self.time_order, **kwargs) kwargs.pop('grid', None) self.state_operator = OperatorDevito(self.space_order, self.time_order, name='elastic_iso_state', grid=self.dev_grid, **kwargs) self.adjoint_operator = OperatorDevito(self.space_order, self.time_order, name='elastic_iso_adjoint', grid=self.dev_grid, **kwargs) self.boundary = None
[docs] def clear_operators(self): self.state_operator.devito_operator = None self.adjoint_operator.devito_operator = None
# forward
[docs] def before_forward(self, wavelets, vp, vs, rho, **kwargs): """ Prepare the problem type to run the state or forward problem. Parameters ---------- wavelets : Traces Source wavelets. vp : ScalarField Compressional (acoustic) speed of sound of the medium, in [m/s]. vs : ScalarField Transverse (shear) speed of sound of the medium, in [m/s]. rho : ScalarField Density of the medium in [kg/m^3]. problem : Problem Sub-problem being solved by the PDE. Returns ------- """ problem = kwargs.get('problem') shot = problem.shot num_sources = shot.num_points_sources num_receivers = shot.num_points_receivers # If there's no previous operator, generate one if self.state_operator.devito_operator is None: # Define variables src = self.dev_grid.sparse_time_function('src', num=num_sources, coordinates=shot.source_coordinates, interpolation_type=self.interpolation_type) rec_tau = self.dev_grid.sparse_time_function('rec_tau', num=num_receivers, coordinates=shot.receiver_coordinates, interpolation_type=self.interpolation_type) step = self.time.step # Create stencil # TODO: save wavefield during simulation # save_wavefield = kwargs.get('save_wavefield', False) # save = Buffer(save_wavefield) if type(save_wavefield) is int else None vel = self.dev_grid.vector_time_function('vel') tau = self.dev_grid.tensor_time_function('tau') # Absorbing boundaries self.boundary = boundaries_registry[self.boundary_type](self.dev_grid) _, _, _ = self.boundary.apply(vel, vp.extended_data, damping_coefficient=1/step) # Define the source injection function using a pressure disturbance src_term = src.inject(field=tau.forward.diagonal(), expr=step * src) rec_term = rec_tau.interpolate(expr=tau[0, 0] + tau[1, 1]) # rec_term += rec_vel.interpolate(expr=devito.div(vel)) # Placeholder for vel receiver # Set up parameters as functions lam_fun = self.dev_grid.function('lam_fun') mu_fun = self.dev_grid.function('mu_fun') byn_fun = self.dev_grid.function('byn_fun') # Compile the operator # velocity (first derivative vel w.r.t. time, first order euler method), step: time_spacing u_v = devito.Eq(vel.forward, self.boundary.damp * (vel + step * byn_fun * devito.div(tau)), grid=self.dev_grid, coefficients=None) # stress (first derivative tau w.r.t. time, first order euler method) u_tau = devito.Eq(tau.forward, self.boundary.damp * ( tau + step * (lam_fun * devito.diag(devito.div(vel.forward)) + mu_fun * (devito.grad(vel.forward) + devito.grad(vel.forward).transpose(inner=False)))) ) self.state_operator.set_operator([u_v] + [u_tau] + src_term + rec_term, **kwargs) self.state_operator.compile() else: # If the source/receiver size has changed, then create new functions for them if num_sources != self.dev_grid.vars.src.npoint: self.dev_grid.sparse_time_function('src', num=num_sources, cached=False) if num_receivers != self.dev_grid.vars.rec_tau.npoint: self.dev_grid.sparse_time_function('rec_tau', num=num_receivers, cached=False) # Clear all buffers self.dev_grid.vars.src.data_with_halo.fill(0.) self.dev_grid.vars.rec_tau.data_with_halo.fill(0.) self.dev_grid.vars.vel[0].data_with_halo.fill(0.) self.dev_grid.vars.vel[1].data_with_halo.fill(0.) self.dev_grid.vars.tau[0, 0].data_with_halo.fill(0.) self.dev_grid.vars.tau[0, 1].data_with_halo.fill(0.) self.dev_grid.vars.tau[1, 0].data_with_halo.fill(0.) self.dev_grid.vars.tau[1, 1].data_with_halo.fill(0.) self.boundary.clear() # Set medium parameters vp_with_halo = self.dev_grid.with_halo(vp.extended_data) vs_with_halo = self.dev_grid.with_halo(vs.extended_data) rho_with_halo = self.dev_grid.with_halo(rho.extended_data) lam_with_halo = rho_with_halo * (vp_with_halo ** 2 - 2. * vs_with_halo ** 2) mu_with_halo = rho_with_halo * vs_with_halo ** 2 byn_with_halo = 1 / rho_with_halo self.dev_grid.vars.lam_fun.data_with_halo[:] = lam_with_halo self.dev_grid.vars.mu_fun.data_with_halo[:] = mu_with_halo self.dev_grid.vars.byn_fun.data_with_halo[:] = byn_with_halo # Set geometry and wavelet wavelets = wavelets.data window = scipy.signal.get_window(('tukey', 0.01), self.time.num, False) window = window.reshape((self.time.num, 1)) self.dev_grid.vars.src.data[:] = wavelets.T * window if self.interpolation_type == 'linear': self.dev_grid.vars.src.coordinates.data[:] = shot.source_coordinates self.dev_grid.vars.rec_tau.coordinates.data[:] = shot.receiver_coordinates
[docs] def run_forward(self, wavelets, vp, vs, rho, **kwargs): """ Run the state or forward problem. Parameters ---------- wavelets : Traces Source wavelets. vp : ScalarField Compressional (acoustic) speed of sound of the medium, in [m/s]. vs : ScalarField Transverse (shear) speed of sound of the medium, in [m/s]. rho : ScalarField Density of the medium in [kg/m^3]. problem : Problem Sub-problem being solved by the PDE. Returns ------- """ functions = dict( src=self.dev_grid.vars.src, rec_tau=self.dev_grid.vars.rec_tau, ) self.state_operator.run(dt=self.time.step, **functions, **kwargs.pop('devito_args', {}))
[docs] def after_forward(self, wavelets, vp, vs, rho, **kwargs): """ Clean up after the state run and retrieve the time traces. Parameters ---------- wavelets : Traces Source wavelets. vp : ScalarField Compressional (acoustic) speed of sound of the medium, in [m/s]. vs : ScalarField Transverse (shear) speed of sound of the medium, in [m/s]. rho : ScalarField Density of the medium in [kg/m^3]. problem : Problem Sub-problem being solved by the PDE. Returns ------- Traces Time traces produced by the state run. """ problem = kwargs.pop('problem') shot = problem.shot self.wavefield = None traces_data = np.asarray(self.dev_grid.vars.rec_tau.data, dtype=np.float32).T traces = shot.observed.alike(name='modelled', data=traces_data) self.dev_grid.deallocate('p') self.dev_grid.deallocate('laplacian') self.dev_grid.deallocate('src') self.dev_grid.deallocate('rec') self.dev_grid.deallocate('vp') self.dev_grid.deallocate('vp2') self.dev_grid.deallocate('inv_vp2') return traces
# adjoint
[docs] def before_adjoint(self, adjoint_source, wavelets, vp, rho=None, alpha=None, **kwargs): """ Not implemented """ pass
[docs] def run_adjoint(self, adjoint_source, wavelets, vp, rho=None, alpha=None, **kwargs): """ Not implemented """ pass
[docs] def after_adjoint(self, **kwargs): """ Not implemented """ pass
# gradients
[docs] def prepare_grad_vp(self, **kwargs): """ Not implemented """ pass
[docs] def init_grad_vp(self, **kwargs): """ Not implemented """ pass
[docs] def get_grad_vp(self, **kwargs): """ Not implemented """ pass
# utils def _check_problem(self): raise NotImplementedError('Check problem not implemented for elastic propagator') def _check_conditions(self): raise NotImplementedError('Check conditions not implemented for elastic propagator') def _saved(self): raise NotImplementedError('Saved not implemented for elastic propagator') def _symbolic_coefficients(self): raise NotImplementedError('DRP weights are not implemented in this version of stride') def _weights(self): raise NotImplementedError('DRP weights are not implemented in this version of stride') def _dt_max(self): raise NotImplementedError('dt_max not implemented for elastic propagator')