Source code for stride.physics.iso_acoustic.devito


import os
import glob
import shutil
import tempfile
import numpy as np
import scipy.signal

import mosaic
from mosaic.utils import at_exit
from mosaic.comms.compression import maybe_compress, decompress

from stride.utils import fft
from stride.problem import StructuredData
from ..common.devito import GridDevito, OperatorDevito, config_devito, devito
from ..boundaries import boundaries_registry
from ..problem_type import ProblemTypeBase


__all__ = ['IsoAcousticDevito']


[docs] @mosaic.tessera class IsoAcousticDevito(ProblemTypeBase): """ This class represents the second-order isotropic acoustic wave equation, implemented using Devito. Parameters ---------- name : str, optional Name of the PDE, defaults to an automatic name. grid : Grid, optional Existing grid, if not provided one will be created. Either a grid or space, time and slow_time need to be provided. space : Space, optional time : Time, optional slow_time : SlowTime, optional Notes ----- For forward execution of the PDE, the following parameters can be used: wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. save_wavefield : bool, optional Whether or not to solve the forward wavefield, defaults to True when a gradient is expected, and to False otherwise. time_bounds : tuple of int, optional If saving the wavefield, specify the ``(min timestep, max timestep)`` where the wavefield should be saved save_undersampling : int, optional Amount of undersampling in time when saving the forward wavefield. If not given, it is calculated given the bandwidth. save_compression : str, optional Compression applied to saved wavefield, only available with DevitoPRO. Defaults to no compression in 2D and ``bitcomp`` in 3D. save_interpolation : bool, optional Whether to interpolate the saved wavefield using natural cubic splines (only available in some versions of Stride). Defaults to False. dump_forward_wavefield : bool or int, optional If True or a positive integer, the forward wavefield will be dumped after running the forward kernel. If True, the wavefield will be sampled every ``save_undersampling`` timesteps. If an integer, the wavefield will be sampled every ``dump_forward_wavefield`` timesteps. Defaults to False. dump_adjoint_wavefield : bool or int, optional If True or a positive integer, the adjoint wavefield will be dumped after running the adjoint kernel. If True, the wavefield will be sampled every ``save_undersampling`` timesteps. If an integer, the wavefield will be sampled every ``dump_adjoint_wavefield`` timesteps. Defaults to False. dump_wavefield_id : int, optional ID of the shot to dump wavefields. If not provided, all IDs are dumped. boundary_type : str, optional Type of boundary for the wave equation (``sponge_boundary_2`` or ``complex_frequency_shift_PML_2``), defaults to ``sponge_boundary_2``. Note that ``complex_frequency_shift_PML_2`` boundaries have lower OT4 stability limit than other boundaries. interpolation_type : str, optional Type of source/receiver interpolation (``linear`` for bi-/tri-linear or ``hicks`` for sinc interpolation), defaults to ``linear``. attenuation_power : int, optional Power of the attenuation law if attenuation is given (``0``, ``2``, or None), defaults to ``0``. drp : bool, optional Whether or not to use dispersion-relation preserving coefficients (only available in some versions of Stride). Defaults to False. kernel : str, optional Type of time kernel to use (``OT2`` for 2nd order in time or ``OT4`` for 4th order in time). If not given, it is automatically decided given the time spacing. diff_source : bool, optional Whether the source should be injected as is, or as its 1st time derivative. Defaults to False, leaving it unchanged. adaptive_boxes : bool, optional Whether to activate adaptive boxes (requires DevitoPRO and only available in some versions of Stride). Defaults to False. local_prec : bool, optional Whether to apply local preconditioning. Only available in some versions of Stride. Defaults to True. platform : str, optional Platform on which to run the operator, ``None`` to run on the CPU or ``nvidia-acc`` to run on the GPU with OpenACC. Defaults to ``None``. devito_config : dict, optional Additional keyword arguments to configure Devito before operator generation. devito_args : dict, optional Additional keyword arguments used when calling the generated operator. """ space_order = 10 time_order = 2 def __init__(self, **kwargs): super().__init__(**kwargs) self.kernel = 'OT4' self.drp = False self.undersampling_factor = 4 self.boundary_type = 'sponge_boundary_2' self.interpolation_type = 'linear' self.attenuation_power = 0 self.adaptive_boxes = False self._wavefield = None self._bandwidth = 0. self._cached_operator = kwargs.pop('cached_operator', False) cached_name = self.__class__.__name__.lower() try: warehouse = mosaic.get_local_warehouse() except AttributeError: self._cached_operator = False if not self._cached_operator or ('%s_dev_grid' % cached_name) not in warehouse: config_devito(**kwargs) dev_grid = kwargs.pop('dev_grid', None) self.dev_grid = dev_grid or GridDevito(self.space_order, self.time_order, **kwargs) kwargs.pop('grid', None) self.state_operator = OperatorDevito(self.space_order, self.time_order, name='acoustic_iso_state', grid=self.dev_grid, **kwargs) self.state_operator_save = OperatorDevito(self.space_order, self.time_order, name='acoustic_iso_state_save', grid=self.dev_grid, **kwargs) self.adjoint_operator = OperatorDevito(self.space_order, self.time_order, name='acoustic_iso_adjoint', grid=self.dev_grid, **kwargs) if self._cached_operator: warehouse['%s_dev_grid' % cached_name] = self.dev_grid warehouse['%s_state_operator' % cached_name] = self.state_operator warehouse['%s_state_operator_save' % cached_name] = self.state_operator_save warehouse['%s_adjoint_operator' % cached_name] = self.adjoint_operator else: self.dev_grid = warehouse['%s_dev_grid' % cached_name] self.state_operator = warehouse['%s_state_operator' % cached_name] self.state_operator_save = warehouse['%s_state_operator_save' % cached_name] self.adjoint_operator = warehouse['%s_adjoint_operator' % cached_name] self.boundary = None self._cache_folder = None self._sub_ops = [] self._cached_subdomains = None self._last_dumped_shot_id = None
[docs] def clear_operators(self): self.state_operator.devito_operator = None self.state_operator_save.devito_operator = None self.adjoint_operator.devito_operator = None
[docs] def deallocate_wavefield(self, platform='cpu', deallocate=False, **kwargs): if (platform and 'nvidia' in platform) \ or (devito.pro_available and isinstance(self._wavefield, devito.CompressedTimeFunction)) \ or deallocate: self._wavefield = None devito.clear_cache(force=True)
[docs] def add_sub_op(self, sub_op): sub_op = sub_op(grid=self.grid, parent_grid=self.dev_grid.devito_grid, dtype=self.dev_grid.dtype) self._sub_ops.append(sub_op)
@property def wavefield(self): if self._wavefield is None: return None wavefield_data = np.asarray(self._wavefield.data, dtype=np.float32) wavefield = StructuredData(name='p', data=wavefield_data, shape=wavefield_data.shape) return wavefield @property def subdomains(self): return self._cached_subdomains # forward
[docs] def before_forward(self, wavelets, vp, rho=None, alpha=None, **kwargs): """ Prepare the problem type to run the state or forward problem. Parameters ---------- wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. save_wavefield : bool, optional Whether or not to solve the forward wavefield, defaults to True when a gradient is expected, and to False otherwise. time_bounds : tuple of int, optional If saving the wavefield, specify the ``(min timestep, max timestep)`` where the wavefield should be saved save_undersampling : int, optional Amount of undersampling in time when saving the forward wavefield. If not given, it is calculated given the bandwidth. save_compression : str, optional Compression applied to saved wavefield, only available with DevitoPRO. Defaults to no compression in 2D and ``bitcomp`` in 3D. save_interpolation : bool, optional Whether to interpolate the saved wavefield using natural cubic splines (only available in some versions of Stride). Defaults to True. dump_forward_wavefield : bool or int, optional If True or a positive integer, the forward wavefield will be dumped after running the forward kernel. If True, the wavefield will be sampled every ``save_undersampling`` timesteps. If an integer, the wavefield will be sampled every ``dump_forward_wavefield`` timesteps. Defaults to False. dump_adjoint_wavefield : bool or int, optional If True or a positive integer, the adjoint wavefield will be dumped after running the adjoint kernel. If True, the wavefield will be sampled every ``save_undersampling`` timesteps. If an integer, the wavefield will be sampled every ``dump_adjoint_wavefield`` timesteps. Defaults to False. dump_wavefield_id : int, optional ID of the shot to dump wavefields. If not provided, all IDs are dumped. boundary_type : str, optional Type of boundary for the wave equation (``sponge_boundary_2`` or ``complex_frequency_shift_PML_2``), defaults to ``sponge_boundary_2``. Note that ``complex_frequency_shift_PML_2`` boundaries have lower OT4 stability limit than other boundaries. interpolation_type : str, optional Type of source/receiver interpolation (``linear`` for bi-/tri-linear or ``hicks`` for sinc interpolation), defaults to ``linear``. attenuation_power : int, optional Power of the attenuation law if attenuation is given (``0``, ``2``, or None), defaults to ``0``. drp : bool, optional Whether or not to use dispersion-relation preserving coefficients (only available in some versions of Stride). Defaults to False. kernel : str, optional Type of time kernel to use (``OT2`` for 2nd order in time or ``OT4`` for 4th order in time). If not given, it is automatically decided given the time spacing. diff_source : bool, optional Whether the source should be injected as is, or as its 1st time derivative. Defaults to False, leaving it unchanged. adaptive_boxes : bool, optional Whether to activate adaptive boxes (requires DevitoPRO and only available in some versions of Stride). Defaults to False. platform : str, optional Platform on which to run the operator, ``None`` to run on the CPU or ``nvidia-acc`` to run on the GPU with OpenACC. Defaults to ``None``. devito_config : dict, optional Additional keyword arguments to configure Devito before operator generation. devito_args : dict, optional Additional keyword arguments used when calling the generated operator. Returns ------- """ problem = kwargs.get('problem') shot = problem.shot self._check_problem(wavelets, vp, rho=rho, alpha=alpha, **kwargs) num_sources = shot.num_points_sources num_receivers = shot.num_points_receivers dump_forward_wavefield = kwargs.pop('dump_forward_wavefield', False) dump_wavefield_id = kwargs.pop('dump_wavefield_id', shot.id) save_wavefield = kwargs.pop('save_wavefield', bool(dump_forward_wavefield) and dump_wavefield_id == shot.id) if save_wavefield is False: save_wavefield = vp.needs_grad if rho is not None: save_wavefield |= rho.needs_grad if alpha is not None: save_wavefield |= alpha.needs_grad platform = kwargs.get('platform', 'cpu') stream_wavefield = kwargs.pop('stream_wavefield', True) is_nvidia = platform is not None and 'nvidia' in platform is_nvc = platform is not None and (is_nvidia or 'nvc' in platform) time_bounds = kwargs.get('time_bounds', (0, self.time.extended_num)) diff_source = kwargs.pop('diff_source', False) fw3d_mode = kwargs.pop('fw3d_mode', False) save_compression = kwargs.get('save_compression', 'bitcomp' if self.space.dim > 2 else None) save_compression = save_compression if (is_nvidia or is_nvc) and devito.pro_available else None # If there's no previous operator, generate one if self.state_operator.devito_operator is None: # Define variables src = self.dev_grid.sparse_time_function('src', num=num_sources, coordinates=shot.source_coordinates, interpolation_type=self.interpolation_type, smooth=True) rec = self.dev_grid.sparse_time_function('rec', num=num_receivers, coordinates=shot.receiver_coordinates, interpolation_type=self.interpolation_type, smooth=False) p = self.dev_grid.time_function('p', coefficients='symbolic' if self.drp else 'standard') # Create stencil stencil = self._stencil(p, wavelets, vp, rho=rho, alpha=alpha, direction='forward', save_wavefield=save_wavefield, **kwargs) # Define the source injection function to generate the corresponding code # pressure_to_density = 1 / vp**2 # density_to_density_rate = 2 * vp / spacing # FDTD_scale = step**2 * vp**2 vp_fun = self.dev_grid.vars.vp src_scale = 2 * self.time.step**2 * vp_fun / max(*self.space.spacing) if not diff_source: src_scale /= self.time.step src_term = src.inject(field=p.forward, expr=src * src_scale) if not fw3d_mode: rec_term = rec.interpolate(expr=p) else: rec_term = rec.interpolate(expr=p.forward) # Define the saving of the wavefield if save_wavefield is True: space_order = None if self._needs_grad(rho, alpha) else 0 if stream_wavefield: layers = devito.HostDevice if is_nvidia else devito.NoLayers else: layers = devito.Device if is_nvidia else devito.NoLayers p_saved = self.dev_grid.undersampled_time_function('p_saved', time_bounds=time_bounds, factor=self.undersampling_factor, space_order=space_order, layers=layers, compression=save_compression) try: self.logger.perf('(ShotID %d) Expected wavefield size %.4f GB' % (problem.shot_id, np.prod(p_saved.shape_allocated)*p_saved.dtype().itemsize/1024**3)) except ValueError: # ValueError: Cannot access `shape_allocated` as unfinalized - so no size estimate pass if self._needs_grad(wavelets, rho, alpha, **kwargs): p_saved_expr = p else: p_saved_expr = self._forward_save(p) abox, full, interior, boundary = self.subdomains update_saved = [devito.Eq(p_saved, p_saved_expr, subdomain=abox)] devicecreate = (self.dev_grid.vars.p, self.dev_grid.vars.p_saved,) if dump_forward_wavefield: if dump_wavefield_id == shot.id: factor = dump_forward_wavefield \ if isinstance(dump_forward_wavefield, int) else self.undersampling_factor layers = devito.Host if is_nvidia else devito.NoLayers p_dump = self.dev_grid.undersampled_time_function('p_dump', time_bounds=time_bounds, factor=factor, space_order=0, layers=layers, compression=None) update_saved += [devito.Eq(p_dump, p, subdomain=abox)] devicecreate += (self.dev_grid.vars.p_dump,) else: update_saved = [] devicecreate = (self.dev_grid.vars.p,) # Compile the operator kwargs['devito_config'] = kwargs.get('devito_config', {}) kwargs['devito_config']['devicecreate'] = devicecreate if self.attenuation_power == 2: kwargs['devito_config']['opt'] = 'noop' self.state_operator.set_operator(stencil + src_term + rec_term, **kwargs) self.state_operator.compile() if save_wavefield is True: self.state_operator_save.set_operator(stencil + src_term + rec_term + update_saved, **kwargs) self.state_operator_save.compile() else: # If the source/receiver size has changed, then create new functions for them if num_sources != self.dev_grid.vars.src.npoint or self.interpolation_type != 'linear': self.dev_grid.sparse_time_function('src', num=num_sources, coordinates=shot.source_coordinates, interpolation_type=self.interpolation_type, smooth=True, cached=False) if num_receivers != self.dev_grid.vars.rec.npoint or self.interpolation_type != 'linear': self.dev_grid.sparse_time_function('rec', num=num_receivers, coordinates=shot.receiver_coordinates, interpolation_type=self.interpolation_type, smooth=False, cached=False) # Clear all buffers self.dev_grid.deallocate('rec') self.dev_grid.vars.rec.data_with_halo.fill(0.) self.dev_grid.vars.p.data_with_halo.fill(0.) self.boundary.clear() # Set medium parameters vp_with_halo = self.dev_grid.with_halo(vp.extended_data) self.dev_grid.vars.vp.data_with_halo[:] = vp_with_halo if rho is not None: self.logger.perf('(ShotID %d) Using inhomogeneous density' % problem.shot_id) rho_with_halo = self.dev_grid.with_halo(rho.extended_data) self.dev_grid.vars.rho.data_with_halo[:] = rho_with_halo self.dev_grid.vars.buoy.data_with_halo[:] = 1/rho_with_halo if alpha is not None: att_pwr = str(self.attenuation_power) if self.attenuation_power is not None else 'None' self.logger.perf('(ShotID %d) Using attenuation with power %s' % (problem.shot_id, att_pwr)) if self.attenuation_power is not None: db_to_neper = 100 * (1e-6 / (2*np.pi))**self.attenuation_power / (20 * np.log10(np.exp(1))) else: db_to_neper = 1 alpha_with_halo = self.dev_grid.with_halo(alpha.extended_data)*db_to_neper self.dev_grid.vars.alpha.data_with_halo[:] = alpha_with_halo # Set geometry and wavelet wavelets = wavelets.data if diff_source: wavelets = np.gradient(wavelets, self.time.step, axis=-1) window = scipy.signal.get_window(('tukey', 0.001), time_bounds[1], False) window = np.pad(window, ((0, self.time.num-time_bounds[1]),), mode='constant', constant_values=0.) window = window.reshape((self.time.num, 1)) self.dev_grid.vars.src.data[:] = wavelets.T * window if self.interpolation_type == 'linear': self.dev_grid.vars.src.coordinates.data[:] = shot.source_coordinates self.dev_grid.vars.rec.coordinates.data[:] = shot.receiver_coordinates
[docs] def run_forward(self, wavelets, vp, rho=None, alpha=None, **kwargs): """ Run the state or forward problem. Parameters ---------- wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. Returns ------- """ problem = kwargs.get('problem') shot = problem.shot dump_forward_wavefield = kwargs.pop('dump_forward_wavefield', False) dump_wavefield_id = kwargs.pop('dump_wavefield_id', shot.id) save_wavefield = kwargs.pop('save_wavefield', bool(dump_forward_wavefield) and dump_wavefield_id == shot.id) if save_wavefield is False: save_wavefield = vp.needs_grad if rho is not None: save_wavefield |= rho.needs_grad if alpha is not None: save_wavefield |= alpha.needs_grad functions = dict( vp=self.dev_grid.vars.vp, src=self.dev_grid.vars.src, rec=self.dev_grid.vars.rec, ) devito_args = kwargs.get('devito_args', {}) if 'p_saved' in self.dev_grid.vars and save_wavefield: if self._wavefield is None: self._wavefield = self.dev_grid.func('p_saved') functions['p_saved'] = self._wavefield if 'nbits_compression' in kwargs or 'nbits' in devito_args: devito_args['nbits'] = kwargs.get('nbits_compression', devito_args.get('nbits', 9)) op = self.state_operator_save else: op = self.state_operator if np.linalg.norm(wavelets.data) < 1e-31: problem = kwargs.pop('problem') self.logger.warn('(ShotID %d) Empty wavelets, not running forward' % problem.shot_id) return time_bounds = kwargs.get('time_bounds', (0, self.time.extended_num)) op.run(dt=self.time.step, time_m=1, time_M=time_bounds[1]-1, **functions, **devito_args)
[docs] def after_forward(self, wavelets, vp, rho=None, alpha=None, **kwargs): """ Clean up after the state run and retrieve the time traces. Parameters ---------- wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. Returns ------- Traces Time traces produced by the state run. """ problem = kwargs.pop('problem') shot = problem.shot dump_forward_wavefield = kwargs.pop('dump_forward_wavefield', False) dump_wavefield_id = kwargs.pop('dump_wavefield_id', shot.id) save_wavefield = kwargs.pop('save_wavefield', bool(dump_forward_wavefield) and dump_wavefield_id == shot.id) if save_wavefield is False: save_wavefield = vp.needs_grad if rho is not None: save_wavefield |= rho.needs_grad if alpha is not None: save_wavefield |= alpha.needs_grad if save_wavefield: if dump_forward_wavefield: self.logger.perf('(ShotID %d) Dumping forward wavefield' % problem.shot_id) iteration = kwargs.pop('iteration', None) version = iteration.abs_id+1 if iteration is not None else 0 p_dump_data = np.asarray(self.dev_grid.vars.p_dump.data, dtype=np.float32) p_dump = StructuredData(name='forward_wavefield-Shot%05d' % shot.id, data=p_dump_data, shape=None, extended_shape=None, inner=None, grid=self.grid) p_dump.dump(path=problem.output_folder, project_name=problem.name, version=version) cache_forward = kwargs.pop('cache_forward', False) cache_location = kwargs.pop('cache_location', None) if cache_forward: slices = [slice(extra, -extra) for extra in self.space.extra] slices = (slice(0, None),) + tuple(slices) inner_wavefield = self._wavefield.data[slices] if cache_location is None: inner_wavefield = [maybe_compress(inner_wavefield[t].copy()) for t in range(inner_wavefield.shape[0])] self._wavefield = inner_wavefield else: prev_cache = glob.glob(os.path.join(cache_location, 'stride-*')) if len(prev_cache): self._cache_folder = prev_cache[0] if self._cache_folder is None: self._cache_folder = tempfile.mkdtemp(prefix='stride-', dir=cache_location) def _rm_tmpdir(): shutil.rmtree(self._cache_folder, ignore_errors=True) at_exit.add(_rm_tmpdir) try: filename = os.path.join(self._cache_folder, '%s-%s-%05d.npy' % (problem.name, 'P', shot.id)) np.save(filename, inner_wavefield) except: shutil.rmtree(self._cache_folder, ignore_errors=True) raise self._wavefield = None self.dev_grid.deallocate('p_saved') traces_data = np.asarray(self.dev_grid.vars.rec.data, dtype=np.float32).T traces = shot.observed.alike(name='modelled', data=traces_data, shape=None, extended_shape=None, inner=None) deallocate = kwargs.get('deallocate', False) if deallocate: self.boundary.deallocate() self.dev_grid.deallocate('p') self.dev_grid.deallocate('laplacian') self.dev_grid.deallocate('src') self.dev_grid.deallocate('rec') self.dev_grid.deallocate('vp') self.dev_grid.deallocate('rho') self.dev_grid.deallocate('buoy') self.dev_grid.deallocate('alpha', collect=True) return traces
# adjoint
[docs] def before_adjoint(self, adjoint_source, wavelets, vp, rho=None, alpha=None, **kwargs): """ Prepare the problem type to run the adjoint problem. Parameters ---------- adjoint_source : Traces Adjoint source. wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. Returns ------- """ problem = kwargs.get('problem') shot = problem.shot num_sources = shot.num_points_sources num_receivers = shot.num_points_receivers time_bounds = kwargs.get('time_bounds', (0, self.time.extended_num)) fw3d_mode = kwargs.pop('fw3d_mode', False) platform = kwargs.get('platform', 'cpu') is_nvidia = platform is not None and 'nvidia' in platform # If there's no previous operator, generate one if self.adjoint_operator.devito_operator is None: # Define variables src = self.dev_grid.sparse_time_function('src', num=num_sources, coordinates=shot.source_coordinates, interpolation_type=self.interpolation_type, smooth=True) rec = self.dev_grid.sparse_time_function('rec', num=num_receivers, coordinates=shot.receiver_coordinates, interpolation_type=self.interpolation_type, smooth=False) p_a = self.dev_grid.time_function('p_a', coefficients='symbolic' if self.drp else 'standard') devicecreate = (self.dev_grid.vars.p_a,) # Create stencil stencil = self._stencil(p_a, wavelets, vp, rho=rho, alpha=alpha, direction='backward', **kwargs) # Define the source injection function to generate the corresponding code t = rec.time_dim vp2 = self.dev_grid.vars.vp**2 if not fw3d_mode: rec_term = rec.inject(field=p_a.backward, expr=-rec.subs({t: t-1}) * self.time.step**2 * vp2) else: rec_term = rec.inject(field=p_a.backward, expr=-rec * self.time.step**2 * vp2) if wavelets.needs_grad: src_term = src.interpolate(expr=p_a) else: src_term = [] # Define gradient gradient_update = self.prepare_grad(wavelets, vp, rho, alpha, **kwargs) # Maybe save wavefield dump_adjoint_wavefield = kwargs.pop('dump_adjoint_wavefield', False) dump_wavefield_id = kwargs.pop('dump_wavefield_id', shot.id) if dump_adjoint_wavefield and dump_wavefield_id == shot.id: factor = dump_adjoint_wavefield \ if isinstance(dump_adjoint_wavefield, int) else self.undersampling_factor layers = devito.Host if is_nvidia else devito.NoLayers p_dump = self.dev_grid.undersampled_time_function('p_a_dump', time_bounds=time_bounds, factor=factor, space_order=0, layers=layers, compression=None) abox, full, interior, boundary = self.subdomains update_saved = [devito.Eq(p_dump, p_a, subdomain=abox)] devicecreate += (self.dev_grid.vars.p_a_dump,) else: update_saved = [] # Compile the operator kwargs['devito_config'] = kwargs.get('devito_config', {}) kwargs['devito_config']['devicecreate'] = devicecreate if self.attenuation_power == 2: kwargs['devito_config']['opt'] = 'noop' self.adjoint_operator.set_operator(stencil + rec_term + src_term + gradient_update + update_saved, **kwargs) self.adjoint_operator.compile() else: # If the source or receiver size has changed, then create new functions for them if num_sources != self.dev_grid.vars.src.npoint or self.interpolation_type != 'linear': self.dev_grid.sparse_time_function('src', num=num_sources, coordinates=shot.source_coordinates, interpolation_type=self.interpolation_type, smooth=True, cached=False) if num_receivers != self.dev_grid.vars.rec.npoint or self.interpolation_type != 'linear': self.dev_grid.sparse_time_function('rec', num=num_receivers, coordinates=shot.receiver_coordinates, interpolation_type=self.interpolation_type, smooth=False, cached=False) # Clear all buffers self.dev_grid.vars.src.data_with_halo.fill(0.) self.dev_grid.vars.p_a.data_with_halo.fill(0.) self.boundary.clear() self.init_grad(wavelets, vp, rho, alpha, **kwargs) # Set wavefield if necessary cache_forward = kwargs.pop('cache_forward', False) cache_location = kwargs.pop('cache_location', None) if cache_forward: slices = [slice(extra, -extra) for extra in self.space.extra] slices = (slice(0, None),) + tuple(slices) wavefield = self.dev_grid.func('p_saved') if cache_location is None: inner_wavefield = np.asarray([np.frombuffer(decompress(*each), dtype=np.float32) for each in self._wavefield]) inner_wavefield = inner_wavefield.reshape((inner_wavefield.shape[0],) + self.space.shape) wavefield.data[slices] = inner_wavefield else: filename = os.path.join(self._cache_folder, '%s-%s-%05d.npy' % (problem.name, 'P', shot.id)) wavefield.data[slices] = np.load(filename) os.remove(filename) self._wavefield = wavefield # Set medium parameters vp_with_halo = self.dev_grid.with_halo(vp.extended_data) self.dev_grid.vars.vp.data_with_halo[:] = vp_with_halo if rho is not None: rho_with_halo = self.dev_grid.with_halo(rho.extended_data) self.dev_grid.vars.rho.data_with_halo[:] = rho_with_halo self.dev_grid.vars.buoy.data_with_halo[:] = 1/rho_with_halo if alpha is not None: if self.attenuation_power is not None: db_to_neper = 100 * (1e-6 / (2*np.pi))**self.attenuation_power / (20 * np.log10(np.exp(1))) else: db_to_neper = 1 alpha_with_halo = self.dev_grid.with_halo(alpha.extended_data)*db_to_neper self.dev_grid.vars.alpha.data_with_halo[:] = alpha_with_halo # Set geometry and adjoint source adjoint_source = adjoint_source.data window = scipy.signal.get_window(('tukey', 0.001), time_bounds[1]-time_bounds[0], False) window = np.pad(window, ((time_bounds[0], self.time.num-time_bounds[1]),), mode='constant', constant_values=0.) window = window.reshape((self.time.num, 1)) self.dev_grid.vars.rec.data[:] = adjoint_source.T * window if self.interpolation_type == 'linear': self.dev_grid.vars.src.coordinates.data[:] = shot.source_coordinates self.dev_grid.vars.rec.coordinates.data[:] = shot.receiver_coordinates
[docs] def run_adjoint(self, adjoint_source, wavelets, vp, rho=None, alpha=None, **kwargs): """ Run the adjoint problem. Parameters ---------- adjoint_source : Traces Adjoint source. wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. Returns ------- """ functions = dict( vp=self.dev_grid.vars.vp, rec=self.dev_grid.vars.rec, p_saved=self._wavefield, ) devito_args = kwargs.get('devito_args', {}) if wavelets.needs_grad: functions['src'] = self.dev_grid.vars.src if np.linalg.norm(adjoint_source.data) < 1e-31: problem = kwargs.pop('problem') self.logger.warn('(ShotID %d) Empty adjoint source, not running adjoint' % problem.shot_id) return time_bounds = kwargs.get('time_bounds', (0, self.time.extended_num)) self.adjoint_operator.run(dt=self.time.step, time_m=time_bounds[0]+1, time_M=time_bounds[1]-1-self.undersampling_factor, **functions, **devito_args)
[docs] def after_adjoint(self, adjoint_source, wavelets, vp, rho=None, alpha=None, **kwargs): """ Clean up after the adjoint run and retrieve the time gradients (if needed). Parameters ---------- adjoint_source : Traces Adjoint source. wavelets : Traces Source wavelets. vp : ScalarField Compressional speed of sound fo the medium, in [m/s]. rho : ScalarField, optional Density of the medium, defaults to homogeneous, in [kg/m^3]. alpha : ScalarField, optional Attenuation coefficient of the medium, defaults to 0, in [dB/cm]. problem : Problem Sub-problem being solved by the PDE. Returns ------- tuple of gradients Tuple with the gradients of the variables that need them """ problem = kwargs.get('problem') shot = problem.shot dump_adjoint_wavefield = kwargs.pop('dump_adjoint_wavefield', False) dump_wavefield_id = kwargs.pop('dump_wavefield_id', shot.id) platform = kwargs.get('platform', 'cpu') deallocate = kwargs.get('deallocate', False) if dump_adjoint_wavefield and dump_wavefield_id == shot.id: self.logger.perf('(ShotID %d) Dumping adjoint wavefield' % problem.shot_id) iteration = kwargs.get('iteration', None) version = iteration.abs_id+1 if iteration is not None else 0 p_dump_data = np.asarray(self.dev_grid.vars.p_a_dump.data, dtype=np.float32) p_dump = StructuredData(name='adjoint_wavefield-Shot%05d' % shot.id, data=p_dump_data, shape=None, extended_shape=None, inner=None, grid=self.grid) p_dump.dump(path=problem.output_folder, project_name=problem.name, version=version) self.deallocate_wavefield(platform=platform, deallocate=deallocate) if deallocate: self.boundary.deallocate() self.dev_grid.deallocate('p_a') self.dev_grid.deallocate('p_saved') self.dev_grid.deallocate('laplacian') self.dev_grid.deallocate('src') self.dev_grid.deallocate('rec') self.dev_grid.deallocate('vp') self.dev_grid.deallocate('rho') self.dev_grid.deallocate('buoy') self.dev_grid.deallocate('alpha', collect=True) return self.get_grad(wavelets, vp, rho, alpha, **kwargs)
# gradients
[docs] def prepare_grad_vp(self, vp, **kwargs): """ Prepare the problem type to calculate the gradients wrt Vp. Parameters ---------- vp : ScalarField Vp variable to calculate the gradient. Returns ------- tuple Tuple of gradient and preconditioner updates. """ p = self.dev_grid.vars.p_saved p_a = self._adjoint_save(self.dev_grid.vars.p_a) abox, full, interior, boundary = self.subdomains subdomain = abox if self.adaptive_boxes else interior wavelets, _, rho, alpha = kwargs.get('wrt') if self._needs_grad(wavelets, rho, alpha): p_dt = self._forward_save_undersampled(p, **kwargs) p_dt_fun = self.dev_grid.function('p_dt', space_order=0) p_dt_update = (devito.Eq(p_dt_fun, p_dt, subdomain=subdomain),) else: p_dt = p p_dt_fun = p_dt p_dt_update = () w = self._time_weights(**kwargs) grad = self.dev_grid.function('grad_vp', space_order=0) grad_update = devito.Inc(grad, w * p_dt_fun * p_a, subdomain=subdomain) prec = self.dev_grid.function('prec_vp', space_order=0) prec_update = devito.Inc(prec, w * p_dt_fun * p_dt_fun, subdomain=subdomain) return p_dt_update + (grad_update, prec_update)
[docs] def init_grad_vp(self, vp, **kwargs): """ Initialise buffers in the problem type to calculate the gradients wrt Vp. Parameters ---------- vp : ScalarField Vp variable to calculate the gradient. Returns ------- """ grad = self.dev_grid.function('grad_vp') grad.data_with_halo.fill(0.) prec = self.dev_grid.function('prec_vp') prec.data_with_halo.fill(0.)
[docs] def get_grad_vp(self, vp, **kwargs): """ Retrieve the gradients calculated wrt to the input. The variable is updated inplace. Parameters ---------- vp : ScalarField Vp variable to calculate the gradient. Returns ------- ScalarField Gradient wrt Vp. """ variable_grad = self.dev_grid.vars.grad_vp variable_grad = np.asarray(variable_grad.data[self.space.inner], dtype=np.float32) variable_prec = self.dev_grid.vars.prec_vp variable_prec = np.asarray(variable_prec.data[self.space.inner], dtype=np.float32) is_slowness = False if vp.transform is not None: # try to figure out if the user wants slowness by testing the provided transform try: is_slowness = np.isclose(1/vp.transform(10), 10) except Exception: pass if is_slowness: variable_grad *= +1 / vp.data variable_prec *= (1 / vp.data)**2 else: variable_grad *= -2 / vp.data**3 variable_prec *= (2 / vp.data)**3**2 deallocate = kwargs.pop('deallocate', False) if deallocate: self.dev_grid.deallocate('grad_vp') self.dev_grid.deallocate('prec_vp') grad = vp.alike(name='vp_grad', data=variable_grad, shape=variable_grad.shape, extended_shape=variable_grad.shape, inner=None) grad.prec = vp.alike(name='vp_prec', data=variable_prec, shape=variable_prec.shape, extended_shape=variable_prec.shape, inner=None) problem = kwargs.pop('problem', None) iteration = kwargs.pop('iteration', None) dump_local_grad = kwargs.pop('dump_local_grad', False) dump_local_prec = kwargs.pop('dump_local_prec', False) if dump_local_grad and problem is not None: grad.dump(path=problem.output_folder, project_name=problem.name, parameter='vp_local_grad-Shot%05d' % problem.shot_id, version=iteration.abs_id + 1) if dump_local_prec and problem is not None: grad.prec.dump(path=problem.output_folder, project_name=problem.name, parameter='vp_local_src_prec-Shot%05d' % problem.shot_id, version=iteration.abs_id + 1) return grad
[docs] def prepare_grad_rho(self, rho, **kwargs): """ Prepare the problem type to calculate the gradients wrt rho. Parameters ---------- rho : ScalarField Density variable to calculate the gradient. Returns ------- tuple Tuple of gradient and preconditioner updates. """ p = self.dev_grid.vars.p_saved p_a = self.dev_grid.vars.p_a buoy = self.dev_grid.vars.buoy abox, full, interior, boundary = self.subdomains subdomain = abox if self.adaptive_boxes else interior grad_term = - devito.grad(buoy, shift=-0.5).dot(devito.grad(p, shift=-0.5)) \ - buoy * p.laplace grad_rho_fun = self.dev_grid.function('grad_rho_fun', space_order=0) grad_term_update = (devito.Eq(grad_rho_fun, grad_term, subdomain=subdomain),) w = self._time_weights(**kwargs) grad = self.dev_grid.function('grad_rho', space_order=0) grad_update = devito.Inc(grad, w * grad_rho_fun * p_a, subdomain=subdomain) prec = self.dev_grid.function('prec_rho', space_order=0) prec_update = devito.Inc(prec, w * grad_rho_fun * grad_rho_fun, subdomain=subdomain) return grad_term_update + (grad_update, prec_update)
[docs] def init_grad_rho(self, rho, **kwargs): """ Initialise buffers in the problem type to calculate the gradients wrt rho. Parameters ---------- rho : ScalarField Density variable to calculate the gradient. Returns ------- """ grad = self.dev_grid.function('grad_rho') grad.data_with_halo.fill(0.) prec = self.dev_grid.function('prec_rho') prec.data_with_halo.fill(0.)
[docs] def get_grad_rho(self, rho, **kwargs): """ Retrieve the gradients calculated wrt to rho. The variable is updated inplace. Parameters ---------- rho : ScalarField Density variable to calculate the gradient. Returns ------- ScalarField Gradient wrt Density. """ variable_grad = self.dev_grid.vars.grad_rho variable_grad = np.asarray(variable_grad.data[self.space.inner], dtype=np.float32) variable_prec = self.dev_grid.vars.prec_rho variable_prec = np.asarray(variable_prec.data[self.space.inner], dtype=np.float32) deallocate = kwargs.pop('deallocate', False) if deallocate: self.dev_grid.deallocate('grad_rho') self.dev_grid.deallocate('prec_rho') grad = rho.alike(name='rho_grad', data=variable_grad, shape=variable_grad.shape, extended_shape=variable_grad.shape, inner=None) grad.prec = rho.alike(name='rho_prec', data=variable_prec, shape=variable_grad.shape, extended_shape=variable_grad.shape, inner=None) return grad
# utils def _check_problem(self, wavelets, vp, rho=None, alpha=None, **kwargs): problem = kwargs.get('problem') recompile = False cached_name = self.__class__.__name__.lower() try: warehouse = mosaic.get_local_warehouse() except AttributeError: warehouse = {} if not self._cached_operator or ('%s_boundary' % cached_name) not in warehouse: boundary_type = kwargs.get('boundary_type', 'sponge_boundary_2') if boundary_type != self.boundary_type or self.boundary is None: recompile = True self.boundary_type = boundary_type if isinstance(self.boundary_type, str): self.boundary = boundaries_registry[self.boundary_type](self.dev_grid) else: self.boundary = self.boundary_type self.logger.perf('(ShotID %d) Selected boundary type %s' % (problem.shot_id, self.boundary_type,)) if self._cached_operator: warehouse['%s_boundary' % cached_name] = self.boundary interpolation_type = kwargs.get('interpolation_type', 'linear') if interpolation_type != self.interpolation_type: recompile = True self.interpolation_type = interpolation_type attenuation_power = kwargs.get('attenuation_power', 0) if attenuation_power != self.attenuation_power: recompile = True self.attenuation_power = attenuation_power drp = kwargs.get('drp', False) if drp != self.drp: recompile = True self.drp = drp adaptive_boxes = kwargs.pop('adaptive_boxes', self.adaptive_boxes) if adaptive_boxes != self.adaptive_boxes: recompile = True self.adaptive_boxes = adaptive_boxes else: self.boundary = warehouse['%s_boundary' % cached_name] preferred_kernel = kwargs.get('kernel', None) preferred_undersampling = kwargs.get('save_undersampling', None) self._check_conditions(wavelets, vp, rho, alpha, preferred_kernel, preferred_undersampling, **kwargs) # Recompile if need to save the wavefield for this shot dump_wavefield_id = kwargs.pop('dump_wavefield_id', None) if dump_wavefield_id is not None: # recompile if need to dump this wavefield and last shot ran a different operator if dump_wavefield_id == problem.shot_id and self._last_dumped_shot_id != dump_wavefield_id: self._last_dumped_shot_id = problem.shot_id recompile = True # or if we dumped the last shot but don't need to dump this one elif dump_wavefield_id != problem.shot_id and self._last_dumped_shot_id == dump_wavefield_id: self._last_dumped_shot_id = None recompile = True if 'p_saved' in self.dev_grid.vars: self._wavefield = None self.dev_grid.delete('p_saved') devito.clear_cache(force=True) # Recompile every time if there are sub ops if len(self._sub_ops) or recompile: self.state_operator.devito_operator = None self.adjoint_operator.devito_operator = None self.logger.perf('(ShotID %d) Selected time stepping scheme %s' % (problem.shot_id, self.kernel,)) if 'OT4' in self.kernel and ('higdon' in self.boundary_type or 'PML' in self.boundary_type): self.logger.warn('(ShotID %d) Higdon and PML boundary conditions are unstable ' 'beyond OT2 limits' % problem.shot_id) def _check_conditions(self, wavelets, vp, rho=None, alpha=None, preferred_kernel=None, preferred_undersampling=None, **kwargs): problem = kwargs.get('problem') # Get speed of sound bounds vp_min = np.min(vp.extended_data) vp_max = np.max(vp.extended_data) # Figure out propagated bandwidth wavelets = wavelets.data if wavelets.ndim > 1: f_mins = [] f_centres = [] f_maxs = [] for i in range(wavelets.shape[0]): if np.any(wavelets[i]): # only run calculations on non-zero wavelets f_min, f_centre, f_max = fft.bandwidth(wavelets[i], self.time.step, cutoff=-10) f_mins.append(f_min) f_centres.append(f_centre) f_maxs.append(f_max) f_min = np.min(f_mins) f_max = np.max(f_maxs) f_centre = np.median(f_centres) self._bandwidth = (f_min, f_centre, f_max) self.logger.perf('(ShotID %d) Estimated bandwidth for the propagated ' 'wavelet %.3f-%.3f MHz' % (problem.shot_id, f_min / 1e6, f_max / 1e6)) # Check for dispersion if self.drp is True: self.drp = False self.logger.warn('(ShotID %d) DRP weights are not implemented in this version of stride' % problem.shot_id) h = max(*self.space.spacing) wavelength = vp_min / f_max ppw = wavelength / h ppw_max = 5 h_max = wavelength / ppw_max if h > h_max: self.logger.warn('(ShotID %d) Spatial grid spacing (%.3f mm | %.3f PPW) is ' 'higher than dispersion limit (%.3f mm | %.3f PPW)' % (problem.shot_id, h / 1e-3, ppw, h_max / 1e-3, ppw_max)) else: self.logger.perf('(ShotID %d) Spatial grid spacing (%.3f mm | %.3f PPW) is ' 'below dispersion limit (%.3f mm | %.3f PPW)' % (problem.shot_id, h / 1e-3, ppw, h_max / 1e-3, ppw_max)) # Check for instability dt = self.time.step dt_max_OT2 = self._dt_max(2.0 / np.pi, h, vp_max) dt_max_OT4 = self._dt_max(3.6 / np.pi, h, vp_max) crossing_factor = dt*vp_max / h * 100 recompile = False if dt <= dt_max_OT2: self.logger.perf('(ShotID %d) Time grid spacing (%.3f \u03BCs | %d%%) is ' 'below OT2 limit (%.3f \u03BCs)' % (problem.shot_id, dt / 1e-6, crossing_factor, dt_max_OT2 / 1e-6)) selected_kernel = 'OT2' elif dt <= dt_max_OT4: self.logger.perf('(ShotID %d) Time grid spacing (%.3f \u03BCs | %d%%) is ' 'above OT2 limit (%.3f \u03BCs) and below OT4 limit (%.3f \u03BCs)' % (problem.shot_id, dt / 1e-6, crossing_factor, dt_max_OT2 / 1e-6, dt_max_OT4 / 1e-6)) selected_kernel = 'OT4' else: self.logger.warn('(ShotID %d) Time grid spacing (%.3f \u03BCs | %d%%) is ' 'above OT4 limit (%.3f \u03BCs)' % (problem.shot_id, dt / 1e-6, crossing_factor, dt_max_OT4 / 1e-6)) selected_kernel = 'OT4' selected_kernel = selected_kernel if preferred_kernel is None else preferred_kernel if self.kernel != selected_kernel: recompile = True self.kernel = selected_kernel # Select undersampling level f_max *= 4 dt_max = 1 / f_max undersampling = min(max(4, int(dt_max / dt)), 10) if preferred_undersampling is None else preferred_undersampling if self.undersampling_factor != undersampling: recompile = True self.undersampling_factor = undersampling self.logger.perf('(ShotID %d) Selected undersampling level %d' % (problem.shot_id, undersampling,)) # Maybe recompile if recompile: self.state_operator.operator = None self.adjoint_operator.operator = None def _stencil(self, field, wavelets, vp, rho=None, alpha=None, direction='forward', save_wavefield=False, **kwargs): stencils = [] # Prepare medium functions vp_fun, vp2_fun, inv_vp2_fun, rho_fun, buoy_fun, alpha_fun = self._medium_functions(vp, rho, alpha, **kwargs) if rho is not None: rho_constant = np.isclose(np.min(rho.extended_data), np.max(rho.extended_data)) else: rho_constant = False # Forward or backward forward = direction == 'forward' # Define time step to be updated u_next = field.forward if forward else field.backward # Prepare the subdomains abox, full, interior, boundary = self._subdomains(field, wavelets, vp_fun, direction=direction, save_wavefield=save_wavefield, **kwargs) # Get the spatial FD if self.kernel == 'OT2': # get the subs if self.drp: extra_functions = () subs = self._symbolic_coefficients(field, *extra_functions) else: subs = None laplacian_term = self._diff_op(field, vp_fun, vp2_fun, inv_vp2_fun, rho=rho_fun, buoy=buoy_fun, alpha=alpha_fun, rho_constant=rho_constant, **kwargs) else: laplacian_2 = self.dev_grid.function('laplacian', coefficients='symbolic' if self.drp else 'standard') # get the subs if self.drp: extra_functions = () subs = self._symbolic_coefficients(field, laplacian_2, *extra_functions) else: subs = None # first laplacian application - L2 laplacian_term_2 = self._diff_op(field, vp_fun, vp2_fun, inv_vp2_fun, rho=rho_fun, buoy=buoy_fun, alpha=alpha_fun, rho_constant=rho_constant, **kwargs) stencil_laplacian = devito.Eq(laplacian_2, laplacian_term_2, subdomain=abox, coefficients=subs) stencils.append(stencil_laplacian) # second laplacian application - L4 laplacian_term_4 = self._diff_op(laplacian_2, vp_fun, vp2_fun, inv_vp2_fun, rho=rho_fun, buoy=buoy_fun, alpha=alpha_fun, rho_constant=rho_constant, **kwargs) # final term laplacian_term = self._laplacian(laplacian_2, laplacian_term_4) # Get the attenuation term if alpha_fun is not None and self.attenuation_power is not None: if self.attenuation_power == 0: u = field elif self.attenuation_power == 2: u = -field.laplace else: raise ValueError('The "attenuation_exponent" can only take values (0, 2).') u_dt = u.dt if direction == 'forward' else u.dt.T attenuation_term = -2 * alpha_fun * vp_fun**(self.attenuation_power - 1) * u_dt else: attenuation_term = 0 # Set up the boundary boundary_field = laplacian_2 if self.kernel != 'OT2' and 'PML' in self.boundary_type else field boundary_term, eq_before, eq_after = self.boundary.apply(boundary_field, vp.extended_data, velocity_fun=vp_fun, direction=direction, subs=subs, abox=abox, f_centre=self._bandwidth[1]) sub_befores = [] sub_afters = [] sub_exprs = [] for sub_op in self._sub_ops: sub_term, sub_before, sub_after = sub_op.sub_stencil(p=field, wavelets=wavelets, vp=vp, rho=rho, dev_grid=self.dev_grid, **kwargs) sub_befores += sub_before sub_afters += sub_after if sub_term is not None: sub_exprs.append(sub_term) sub_exprs = sum(sub_exprs) # Define PDE and update rule eq_interior = devito.solve(field.dt2 - laplacian_term - vp2_fun*attenuation_term - vp2_fun*sub_exprs, u_next) eq_boundary = devito.solve(field.dt2 - laplacian_term - vp2_fun*attenuation_term + vp2_fun*boundary_term - vp2_fun*sub_exprs, u_next) # Time-stepping stencil if 'hybrid' in self.boundary_type: domain = abox else: domain = interior stencil_interior = devito.Eq(u_next, eq_interior, subdomain=domain, coefficients=subs) stencils.append(stencil_interior) if 'hybrid' in self.boundary_type: stencil_boundary = [] else: stencil_boundary = [devito.Eq(u_next, eq_boundary, subdomain=dom, coefficients=subs) for dom in boundary] stencils += stencil_boundary # Forced attenuation update if alpha_fun is not None and self.attenuation_power is None: stencils += [devito.Eq(u_next, alpha_fun*u_next, subdomain=None, coefficients=subs)] return sub_befores + eq_before + stencils + eq_after + sub_afters def _medium_functions(self, vp, rho=None, alpha=None, **kwargs): _kwargs = { # 'coefficients': 'symbolic' if self.drp else 'standard', } vp_fun = self.dev_grid.function('vp', **_kwargs) vp2_fun = vp_fun**2 inv_vp2_fun = 1/vp_fun**2 if rho is not None: rho_fun = self.dev_grid.function('rho', **_kwargs) buoy_fun = self.dev_grid.function('buoy', **_kwargs) else: rho_fun = buoy_fun = None if alpha is not None: alpha_fun = self.dev_grid.function('alpha', **_kwargs) else: alpha_fun = None return vp_fun, vp2_fun, inv_vp2_fun, rho_fun, buoy_fun, alpha_fun def _laplacian(self, laplacian_2, laplacian_4, **kwargs): if self.kernel not in ['OT2', 'OT4']: raise ValueError("Unrecognized kernel") if self.kernel == 'OT2': bi_harmonic = 0 else: bi_harmonic = self.time.step**2/12 * laplacian_4 laplacian_update = laplacian_2 + bi_harmonic return laplacian_update def _diff_op(self, field, vp, vp2, inv_vp2, **kwargs): rho = kwargs.pop('rho', None) buoy = kwargs.pop('buoy', None) rho_constant = kwargs.pop('rho_constant', False) if buoy is None: return vp2 * field.laplace else: if rho_constant: return vp2 * self._div_op(self._grad_op(field, shift=+1), shift=-1) else: return vp2 * rho * self._div_op(self._mul_buoy(buoy, self._grad_op(field, shift=+1)), shift=-1) def _grad_op(self, f, shift=+1): return devito.grad(f, shift=shift * 0.5) def _div_op(self, fs, shift=-1): return devito.div(fs, shift=shift * 0.5) def _mul_buoy(self, buoy, fs): return buoy * fs def _subdomains(self, *args, **kwargs): problem = kwargs.get('problem') if self.adaptive_boxes: self.logger.warn('(ShotID %d) Adaptive boxes are not implemented in this version of stride' % problem.shot_id) full = self.dev_grid.full interior = self.dev_grid.interior boundary = self.dev_grid.pml self._cached_subdomains = (full, full, interior, boundary) return full, full, interior, boundary def _symbolic_coefficients(self, *functions): raise NotImplementedError('DRP weights are not implemented in this version of stride') def _weights(self): raise NotImplementedError('DRP weights are not implemented in this version of stride') def _dt_max(self, k, h, vp_max): return k * h / vp_max * 1 / np.sqrt(self.space.dim) def _needs_grad(self, *wrt, **kwargs): force_raw_wavefield = kwargs.pop('force_raw_wavefield', False) return any(v is not None and v.needs_grad for v in wrt) or force_raw_wavefield def _forward_save(self, field): return field.dt2 def _forward_save_undersampled(self, field, **kwargs): return self.dev_grid.undersampled_time_derivative(field, self.undersampling_factor, bounds=kwargs.get('time_bounds', None), deriv_order=2, fd_order=2) def _adjoint_save(self, field): return field def _time_weights(self, **kwargs): return 1.