Source code for stride.core


import uuid
import asyncio
import inspect
import numpy as np
from abc import abstractmethod
from collections import OrderedDict

import mosaic
from mosaic import types
from mosaic.core.base import CMDBase
from mosaic.core import TaskProxy


__all__ = ['Variable', 'Operator']


async def _maybe_sum(a, b):
    if isinstance(a, types.awaitable_types):
        a = await a.result()

    if isinstance(b, types.awaitable_types):
        b = await b.result()

    if b is None:
        return a

    elif a is None:
        return b

    else:
        if isinstance(a, tuple) and not isinstance(b, tuple):
            return a[0] + b, a[1]
        elif not isinstance(a, tuple) and isinstance(b, tuple):
            return b[0] + a, b[1]
        elif isinstance(a, tuple) and isinstance(b, tuple):
            return a[0] + b[0], a[1] + b[1]

        return a + b


class no_grad:

    def __init__(self, *args, **kwargs):
        self.arg_flags = dict()
        self.kwarg_flags = dict()

        self._args = args
        self._kwargs = kwargs

    def __enter__(self):
        for index, variable in zip(range(len(self._args)), self._args):
            if hasattr(variable, 'needs_grad'):
                self.arg_flags[index] = variable.needs_grad
                variable.needs_grad = False

        for key, variable in self._kwargs.items():
            if hasattr(variable, 'needs_grad'):
                self.kwarg_flags[key] = variable.needs_grad
                variable.needs_grad = False

    def __exit__(self, exc_type, exc_val, exc_tb):
        for index, variable in zip(range(len(self._args)), self._args):
            if hasattr(variable, 'needs_grad'):
                variable.needs_grad = self.arg_flags[index]

        for key, variable in self._kwargs.items():
            if hasattr(variable, 'needs_grad'):
                variable.needs_grad = self.kwarg_flags[key]


[docs] class Node: """ Node in the adjoint graph. Parameters ---------- op : Operator Operator to which the Node refers. method : str Method within the operator that is to be executed in the adjoint pass. idx : int, optional Index, within the argument list of the adjoint method, that this node represents. nxt : list, optional Nodes to which the result of this one will be propagated to. """ def __init__(self, op, method, idx=0, nxt=None): self.op_name = op.uname self.method = method self.idx = idx self.next = nxt or [] if hasattr(op, '_tessera') or \ (hasattr(op, 'has_tessera') and op.has_tessera and op.is_proxy): op = getattr(op, '_tessera') self.op = op if self.method != '__noop__' else None @property def name(self): """ Full name of the node. """ return '%s.%s' % (self.op_name, self.method) @property def name_idx(self): """ Name of the node including its index. """ return '%s.%s:%d' % (self.op_name, self.method, self.idx)
[docs] def add_next(self, node): """ Add node to the list of next nodes. Parameters ---------- node : Node Returns ------- """ nxt = [each.name_idx for each in self.next] if node.name_idx not in nxt: self.next.append(node)
[docs] def copy(self): """ Create a copy of the node. Returns ------- Node """ node = Node(self.op, self.method, self.idx) node.next = [each.copy() for each in self.next] return node
def __repr__(self): nxt = ', '.join([each.name_idx for each in self.next]) return '<%s, next:[%s]>' % (self.name, nxt)
[docs] class Graph: """ Class representing an adjoint graph. """ def __init__(self): self.nodes = OrderedDict()
[docs] def add(self, node): """ Add node to the graph. Parameters ---------- node : Node Returns ------- """ if node.name not in self.nodes: self.nodes[node.name] = node node = self.nodes[node.name] for nxt in node.next: self.add(nxt) return node
[docs] @staticmethod def toposort(root): """ Iterate over the graph in topological order, starting a the given root and all the way to the leaves. Parameters ---------- root : Node Returns ------- iterable """ next_counts = dict() stack = [root] while stack: node = stack.pop() if node.name in next_counts: next_counts[node.name] += 1 else: next_counts[node.name] = 1 stack.extend(node.next) available_nodes = [root] while available_nodes: node = available_nodes.pop() yield node for nxt in node.next: if next_counts[nxt.name] == 1: available_nodes.append(nxt) else: next_counts[nxt.name] -= 1
[docs] def print(self, root=None): """ Print the graph. Parameters ---------- root : Node, optional Root to start the printing from if topological sorting is wanted. Returns ------- """ print(self.__repr__(root))
def __repr__(self, root=None): if root is None: nodes = self.nodes.values() else: nodes = self.toposort(root) nodes = ''.join(['\t* ' + str(each) + '\n' for each in nodes]) return '<graph %s>\n%s' % (id(self), nodes)
[docs] class Variable: """ Variables are the inputs and outputs of operators, and track the graph through which they have travelled. Parameters ---------- name : str, optional Name of the varible, defaults to automatic name. needs_grad : bool, optional Whether or not the gradient wrt to this variable is needed, and thus whether or not the adjoint graph starting from this variable needs to be constructed, defaults to False. """ _count = 0 def __init__(self, *args, **kwargs): cls = self.__class__ name = kwargs.pop('name', cls.__name__.lower()) self._init_name = name runtime = mosaic.runtime() runtime = runtime.uid if runtime else 'head' uname = '%s:%s_%d' % (runtime, cls.__name__.lower(), cls._count) self.name = name or uname uid = uuid.uuid5(uuid.NAMESPACE_OID, uname).hex self.uname = '%s-%d-%s' % (name or cls.__name__.lower(), cls._count, uid) cls._count += 1 self.grad = None self.prec = None self.transform = kwargs.pop('transform', None) self.graph = Graph() self.prev_op = None self.needs_grad = kwargs.pop('needs_grad', False)
[docs] async def adjoint(self, grad=None, **kwargs): """ Run the adjoint graph that has this variable as its root. Parameters ---------- grad : optional Gradient seed to start the adjoint run. kwargs : optional Extra arguments to pass on through the adjoint run. Returns ------- """ # init grad grad = grad or 1.0 # no need to run graph if self.prev_op is None: await self.__call_adjoint__(grad, **kwargs) self.clear_graph() return prev = dict() prev[self.prev_op.name_idx] = grad returns = [] for node in self.graph.toposort(self.prev_op): if node.method == '__noop__': continue # prepare output grads output_names = [each for each in prev.keys() if each.startswith(node.name)] output_names.sort() output_grads = [prev[each] for each in output_names] # call adjoint method method = getattr(node.op, node.method) ret = method(*output_grads, **kwargs) if inspect.iscoroutine(ret) or inspect.iscoroutinefunction(ret): ret = await ret if isinstance(ret, TaskProxy): if not hasattr(node.op, 'has_tessera') or not node.op.has_tessera or not node.op.is_proxy: returns.append(ret) input_grads = ret.outputs else: if inspect.iscoroutine(ret) or inspect.iscoroutinefunction(ret): ret = await ret input_grads = (ret,) if not isinstance(ret, tuple) else ret try: if len(input_grads) < len(node.next): raise RuntimeError('Provided %d outputs for the adjoint of operator %s, ' 'but %d were expected' % (len(input_grads), node.op.uname, len(node.next))) except TypeError: pass # store gradients for future use for nxt_index in range(len(node.next)): nxt = node.next[nxt_index] input_grad = input_grads[nxt_index] if nxt.method == '__noop__': continue if nxt.name_idx in prev: prev[nxt.name_idx] = await _maybe_sum(prev[nxt.name_idx], input_grad) else: prev[nxt.name_idx] = input_grad await asyncio.gather(*returns) self.clear_graph()
[docs] def detach(self, *args, **kwargs): """ Create a copy of the variable that is detached from the original graph. Returns ------- Variable Detached variable. """ kwargs['name'] = kwargs.pop('name', self._init_name) kwargs['needs_grad'] = kwargs.pop('needs_grad', self.needs_grad) kwargs['transform'] = kwargs.pop('transform', self.transform) if hasattr(self, 'has_tessera') and self.has_tessera: cpy = self.__class__.parameter(*args, **kwargs) else: cpy = self.__class__(*args, **kwargs) if self.grad is not None: cpy.grad = self.grad.copy() if self.prec is not None: cpy.prec = self.prec.copy() return cpy
[docs] def as_parameter(self, *args, **kwargs): """ Create a copy of the variable that is detached from the original graph and re-initialised as a parameter. Returns ------- Variable Detached variable. """ kwargs['name'] = kwargs.pop('name', self._init_name) kwargs['needs_grad'] = kwargs.pop('needs_grad', self.needs_grad) kwargs['transform'] = kwargs.pop('transform', self.transform) cpy = self.__class__.parameter(*args, **kwargs) if self.grad is not None: cpy.grad = self.grad.copy() if self.prec is not None: cpy.prec = self.prec.copy() return cpy
[docs] def copy(self, *args, **kwargs): """ Create a variable that shares its characteristics with this object. The same parameters as those given to ``__init__`` are valid here. Otherwise the new object will be configured to be like this one. Returns ------- Variable Copied variable. """ kwargs['name'] = kwargs.pop('name', self._init_name) kwargs['needs_grad'] = kwargs.pop('needs_grad', self.needs_grad) kwargs['transform'] = kwargs.pop('transform', self.transform) propagate_tessera = kwargs.pop('propagate_tessera', True) if propagate_tessera and hasattr(self, 'has_tessera') and self.has_tessera: return self.__class__.parameter(*args, **kwargs) else: return self.__class__(*args, **kwargs)
[docs] def alike(self, *args, **kwargs): """ Alias for a copy. """ kwargs['propagate_tessera'] = kwargs.pop('propagate_tessera', False) return self.copy(*args, **kwargs)
[docs] def clear_graph(self): """ Clear the adjoint graph of the variable. Returns ------- """ self.graph = Graph() self.prev_op = None
[docs] def clear_grad(self): """ Clear the gradient buffer of the variable. Returns ------- """ raise NotImplementedError('Unimplemented Variable method clear_grad')
[docs] def process_grad(self): """ Process the gradient of the variable for its use. Returns ------- object Processed gradient """ raise NotImplementedError('Unimplemented Variable method process_grad')
[docs] async def __call_adjoint__(self, grad, **kwargs): """ Adjoint operation of the variable, which accumulates the given gradient on the ``Variable.grad`` attribute. Parameters ---------- grad : object Provided gradient Returns ------- """ if grad is None or not self.needs_grad or self.grad is None: return grad_data = grad.data if hasattr(grad, 'data') else grad is_nan = np.any(np.isnan(grad_data)) is_inf = np.any(np.isinf(grad_data)) if is_nan or is_inf: msg = 'Nan or inf detected in %s' % self.name problem = kwargs.pop('problem', None) shot_id = problem.shot.id if problem is not None else kwargs.pop('shot_id', None) if shot_id is not None: msg = '(ShotID %d) ' % shot_id + msg mosaic.logger().warn(msg) return self.grad += grad
def __repr__(self): return self.name
[docs] class Operator: """ Operators represent operations that, when performed on Variables, construct an adjoint graph that can then be executed in an adjoint run to calculate necessary gradients. Parameters ---------- name : str, optional Name of the varible, defaults to automatic name. """ _count = 0 def __init__(self, *args, **kwargs): cls = self.__class__ name = kwargs.pop('name', None) runtime = mosaic.runtime() runtime = runtime.uid if runtime else 'head' uname = '%s:%s_%d' % (runtime, cls.__name__.lower(), cls._count) self.name = name or uname uid = uuid.uuid5(uuid.NAMESPACE_OID, uname).hex self.uname = '%s-%d-%s' % (name or cls.__name__.lower(), cls._count, uid) cls._count += 1 self.inputs = None self.num_outputs = None
[docs] @abstractmethod async def forward(self, *args, **kwargs): """ Method defining the forward behaviour of the operator. This method needs to be defined by classes inheriting from the operator. The method can take multiple inputs and produce multiple outputs. Outputs of this method should be of type Variable. Positional and keyword arguments to forward are processed so that present variables are tracked. This method should not be called directly from user code. Parameters ---------- args kwargs Returns ------- """ pass
[docs] @abstractmethod async def adjoint(self, *args, **kwargs): """ Method defining the adjoint behaviour of the operator. This method needs to be defined by classes inheriting from the operator. The method will be called with positional arguments comprised of: the gradients of every output of the forward operation, followed by the arguments originally given when calling the forward method. The adjoint method needs to return a gradient for each of its Variable inputs (or None if the variable does not ``needs_grad``). This method should not be called directly from user code. Parameters ---------- args kwargs Returns ------- """ pass
[docs] async def __call__(self, *args, **kwargs): """ Operators are executed by calling them. The operator will then take care of tracking all necessary Variables. Parameters ---------- args kwargs Returns ------- """ # process inputs needs_grad = False next_ops = [] args, kwargs = await self._process_inputs(*args, **kwargs) for arg in args: if hasattr(arg, 'needs_grad') and not isinstance(arg, CMDBase): needs_grad |= arg.needs_grad if arg.needs_grad and arg.prev_op is None: next_ops.append(Node(arg, '__call_adjoint__', 0)) elif arg.needs_grad: next_ops.append(arg.prev_op) else: next_ops.append(Node(arg, '__noop__', 0)) for arg in kwargs.values(): if hasattr(arg, 'needs_grad') and not isinstance(arg, CMDBase): needs_grad |= arg.needs_grad if arg.needs_grad and arg.prev_op is None: next_ops.append(Node(arg, '__call_adjoint__', 0)) elif arg.needs_grad: next_ops.append(arg.prev_op) else: next_ops.append(Node(arg, '__noop__', 0)) self.inputs = (args, kwargs) # call forward if inspect.iscoroutinefunction(self.forward): outputs = await self.forward(*args, **kwargs) else: outputs = self.forward(*args, **kwargs) outputs = (outputs,) if not isinstance(outputs, tuple) else outputs # process outputs for idx, output in zip(range(len(outputs)), outputs): if needs_grad: prev_op = Node(self, '__call_adjoint__', idx, next_ops) output.graph.add(prev_op) output.prev_op = prev_op output.needs_grad = needs_grad self.num_outputs = len(outputs) outputs = outputs if len(outputs) > 1 else outputs[0] return outputs
[docs] async def __call_adjoint__(self, *output_grads, **kwargs): """ This method runs the necessary operations to execute the adjoint of the operator. Parameters ---------- output_grads kwargs Returns ------- """ # process inputs output_grads, kwargs = await self._process_inputs(*output_grads, **kwargs) # call adjoint input_args = self.inputs[0] input_kwargs = {**self.inputs[1], **kwargs} if inspect.iscoroutinefunction(self.adjoint): input_grads = await self.adjoint(*output_grads, *input_args, **input_kwargs) else: input_grads = self.adjoint(*output_grads, *input_args, **input_kwargs) # clean up self.inputs = None self.num_outputs = None return input_grads
async def _process_inputs(self, *args, **kwargs): processed_args = [] processed_kwargs = dict() for arg in args: if type(arg) in types.awaitable_types: await arg if isinstance(arg, types.awaitable_types): continue arg = await arg.result() processed_args.append(arg) for key, arg in kwargs.items(): if type(arg) in types.awaitable_types: await arg if isinstance(arg, types.awaitable_types): continue arg = await arg.result() processed_kwargs[key] = arg return processed_args, processed_kwargs def __repr__(self): return self.name